Pobierz kartę szkolenia

MLOps Engineering on AWS

kod szkolenia: AWS-MLOPS / PL AA 3d

promocja
Termin
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  23.04 24.04 25.04
Original price was: 5 900,00 PLN.Current price is: 5 000,00 PLN. + 23% VAT (6 150,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  21.05 22.05 23.05
Original price was: 5 900,00 PLN.Current price is: 5 000,00 PLN. + 23% VAT (6 150,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  18.06 19.06 20.06
Original price was: 5 900,00 PLN.Current price is: 5 000,00 PLN. + 23% VAT (6 150,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  16.07 17.07 18.07
5 900,00 PLN + 23% VAT (7 257,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  13.08 14.08 15.08
5 900,00 PLN + 23% VAT (7 257,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  10.09 11.09 12.09
5 900,00 PLN + 23% VAT (7 257,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  08.10 09.10 10.10
5 900,00 PLN + 23% VAT (7 257,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  05.11 06.11 07.11
5 900,00 PLN + 23% VAT (7 257,00 PLN brutto)
Poprzednia najniższa cena:
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  24h|  03.12 04.12 05.12
5 900,00 PLN + 23% VAT (7 257,00 PLN brutto)
Poprzednia najniższa cena:
5 900,00 PLN 7 257,00 PLN brutto

This course is intended for any one of the following roles with responsibility for productionizing machine learning models in the AWS Cloud:

  • DevOps engineers
  • ML engineers
  • Developers/operations with responsibility for operationalizing ML models

In this course, you will learn to:

  • Describe machine learning operations
  • Understand the key differences between DevOps and MLOps
  • Describe the machine learning workflow
  • Discuss the importance of communications in MLOps
  • Explain end-to-end options for automation of ML workflows
  • List key Amazon SageMaker features for MLOps automation
  • Build an automated ML process that builds, trains, tests, and deploys models
  • Build an automated ML process that retrains the model based on change(s) to the model code
  • Identify elements and important steps in the deployment process
  • Describe items that might be included in a model package, and their use in training or inference
  • Recognize Amazon SageMaker options for selecting models for deployment, including support for
  • ML frameworks and built-in algorithms or bring-your-own-models
  • Differentiate scaling in machine learning from scaling in other applications
  • Determine when to use different approaches to inference
  • Discuss deployment strategies, benefits, challenges, and typical use cases
  • Describe the challenges when deploying machine learning to edge devices
  • Recognize important Amazon SageMaker features that are relevant to deployment and inference
  • Describe why monitoring is important
  • Detect data drifts in the underlying input data
  • Demonstrate how to monitor ML models for bias
  • Explain how to monitor model resource consumption and latency
  • Discuss how to integrate human-in-the-loop reviews of model results in production

Day 1
Module 0: Welcome

  • Course introduction

Module 1: Introduction to MLOps

  • Machine learning operations
  • Goals of MLOps
  • Communication
  • From DevOps to MLOps
  • ML workflow
  • Scope
  • MLOps view of ML workflow
  • MLOps cases

Module 2: MLOps Development

  • Intro to build, train, and evaluate machine learning models
  • MLOps security
  • Automating
  • Apache Airflow
  • Kubernetes integration for MLOps
  • Amazon SageMaker for MLOps
  • Lab: Bring your own algorithm to an MLOps pipeline
  • Demonstration: Amazon SageMaker
  • Intro to build, train, and evaluate machine learning models
  • Lab: Code and serve your ML model with AWS CodeBuild
  • Activity: MLOps Action Plan Workbook

Day 2
Module 3: MLOps Deployment

  • Introduction to deployment operations
  • Model packaging
  • Inference
  • Lab: Deploy your model to production
  • SageMaker production variants
  • Deployment strategies
  • Deploying to the edge
  • Lab: Conduct A/B testing
  • Activity: MLOps Action Plan Workbook

Day 3
Module 4: Model Monitoring and Operations

  • Lab: Troubleshoot your pipeline
  • The importance of monitoring
  • Monitoring by design
  • Lab: Monitor your ML model
  • Human-in-the-loop
  • Amazon SageMaker Model Monitor
  • Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature Store
  • Solving the Problem(s)
  • Activity: MLOps Action Plan Workbook

Module 5: Wrap-up

  • Course review
  • Activity: MLOps Action Plan Workbook
  • Wrap-up

Required

  • AWS Technical Essentials course (classroom or digital)
  • DevOps Engineering on AWS course, or equivalent experience
  • Practical Data Science with Amazon SageMaker course, or equivalent experience

Recommended

  • The Elements of Data Science (digital course), or equivalent experience
  • Machine Learning Terminology and Process (digital course)
  • Course: polish