Pobierz kartę szkolenia

Building Batch Data Analytics Solutions on AWS

kod szkolenia: AWS-BUIL-DA-AN-SOL / PL AA 1d

Termin
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 1 dzień |  7h|  07.10
2 000,00 PLN + 23% VAT (2 460,00 PLN brutto)
Poprzednia najniższa cena:
1 700,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 1 dzień |  7h|  28.10
2 000,00 PLN + 23% VAT (2 460,00 PLN brutto)
Poprzednia najniższa cena:
1 700,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 1 dzień |  7h|  04.11
2 000,00 PLN + 23% VAT (2 460,00 PLN brutto)
Poprzednia najniższa cena:
1 700,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 1 dzień |  7h|  25.11
2 000,00 PLN + 23% VAT (2 460,00 PLN brutto)
Poprzednia najniższa cena:
1 700,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 1 dzień |  7h|  02.12
2 000,00 PLN + 23% VAT (2 460,00 PLN brutto)
Poprzednia najniższa cena:
1 700,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 1 dzień |  7h|  16.12
2 000,00 PLN + 23% VAT (2 460,00 PLN brutto)
Poprzednia najniższa cena:
1 700,00 PLN
2 000,00 PLN 2 460,00 PLN brutto

This course is intended for:

  • Data platform engineers
  • Architects and operators who build and manage data analytics pipelines
     

In this course, you will learn to:

  • Compare the features and benefits of data warehouses, data lakes, and modern data architectures
  • Design and implement a batch data analytics solution
  • Identify and apply appropriate techniques, including compression, to optimize data storage
  • Select and deploy appropriate options to ingest, transform, and store data
  • Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case
  • Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
  • Secure data at rest and in transit
  • Monitor analytics workloads to identify and remediate problems
  • Apply cost management best practices

Students with a minimum one-year experience managing open-source data frameworks such as Apache
Spark or Apache Hadoop will benefit from this course.

  • Szkolenie: polski
  • Materiały: angielski

This course includes presentations, interactive demos, practice labs, discussions, and class exercises.

 

Course outline
Module A: Overview of Data Analytics and the Data Pipeline

  • Data analytics use cases
  • Using the data pipeline for analytics

Module 1: Introduction to Amazon EMR

  • Using Amazon EMR in analytics solutions
  • Amazon EMR cluster architecture
  • Interactive Demo 1: Launching an Amazon EMR cluster
  • Cost management strategies

Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and Storage

  • Storage optimization with Amazon EMR
  • Data ingestion techniques

Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR

  • Apache Spark on Amazon EMR use cases
  • Why Apache Spark on Amazon EMR
  • Spark concepts
  • Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the Sark shell
  • Transformation, processing, and analytics
  • Using notebooks with Amazon EMR
  • Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR

Module 4: Processing and Analyzing Batch Data with Amazon EMR and Apache Hive

  • Using Amazon EMR with Hive to process batch data
  • Transformation, processing, and analytics
  • Practice Lab 2: Batch data processing using Amazon EMR with Hive
  • Introduction to Apache HBase on Amazon EMR

Module 5: Serverless Data Processing

  • Serverless data processing, transformation, and analytics
  • Using AWS Glue with Amazon EMR workloads
  • Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions

Module 6: Security and Monitoring of Amazon EMR Clusters

  • Securing EMR clusters
  • Interactive Demo 3: Client-side encryption with EMRFS
  • Monitoring and troubleshooting Amazon EMR clusters
  • Demo: Reviewing Apache Spark cluster history

Module 7: Designing Batch Data Analytics Solutions

  • Batch data analytics use cases

Activity: Designing a batch data analytics workflow
Module B: Developing Modern Data Architectures on AWS

  • Modern data architectures