Pobierz kartę szkolenia

Data Warehousing on AWS

kod szkolenia: AWS-DA-WARE / PL AA 3d

promocja
Termin
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  21h|  21.10 22.10 23.10
5 000,00 PLN + 23% VAT (6 150,00 PLN brutto)
Poprzednia najniższa cena:
5 000,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  21h|  04.11 05.11 06.11
5 000,00 PLN + 23% VAT (6 150,00 PLN brutto)
Poprzednia najniższa cena:
5 000,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 3 dni |  21h|  16.12 17.12 18.12
5 000,00 PLN + 23% VAT (6 150,00 PLN brutto)
Poprzednia najniższa cena:
5 000,00 PLN
5 900,00 PLN 7 257,00 PLN brutto

This course is intended for:

  • Database Architects
  • Database Administrators
  • Database Developers
  • Data Analysts
  • Data Scientists
     

In this course, you will:

  • Discuss the core concepts of data warehousing, and the intersection between data warehousing and big data solutions
  • Launch an Amazon Redshift cluster and use the components, features, and functionality to implement a data warehouse in the cloud
  • Use other AWS data and analytic services, such as Amazon DynamoDB, Amazon EMR, Amazon Kinesis, and Amazon S3, to contribute to the data warehousing solution
  • Architect the data warehouse
  • Identify performance issues, optimize queries, and tune the database for better performance
  • Use Amazon Redshift Spectrum to analyze data directly from an Amazon S3 bucket
  • Use Amazon QuickSight to perform data analysis and visualization tasks against the data warehouse

We recommend that attendees of this course have:

  • Taken AWS Technical Essentials (or equivalent experience with AWS)
  • Familiarity with relational databases and database design concepts
  • Szkolenie: polski
  • Materiały: angielski

This course includes presentations, group exercises, and hands-on labs.

 

Course outline
Day 1
Module 1: Introduction to Data Warehousing

  • Relational databases
  • Data warehousing concepts
  • The intersection of data warehousing and big data
  • Overview of data management in AWS
  • Hands-on lab 1: Introduction to Amazon Redshift

Module 2: Introduction to Amazon Redshift

  • Conceptual overview
  • Real-world use cases
  • Hands-on lab 2: Launching an Amazon Redshift cluster

Module 3: Launching clusters

  • Building the cluster
  • Connecting to the cluster
  • Controlling access
  • Database security
  • Load data
  • Hands-on lab 3: Optimizing database schemas

Day 2
Module 4: Designing the database schema

  • Schemas and data types
  • Columnar compression
  • Data distribution styles
  • Data sorting methods

Module 5: Identifying data sources

  • Data sources overview
  • Amazon S3
  • Amazon DynamoDB
  • Amazon EMR
  • Amazon Kinesis Data Firehose
  • AWS Lambda Database Loader for Amazon Redshift
  • Hands-on lab 4: Loading real-time data into an Amazon Redshift database

Module 6: Loading data

  • Preparing Data
  • Loading data using COPY
  • Maintaining tables
  • Concurrent write operations
  • Troubleshooting load issues
  • Hands-on lab 5: Loading data with the COPY command

Day 3
Module 7: Writing queries and tuning for performance

  • Amazon Redshift SQL
  • User-Defined Functions (UDFs)
  • Factors that affect query performance
  • The EXPLAIN command and query plans
  • Workload Management (WLM)
  • Hands-on lab 6: Configuring workload management

Module 8: Amazon Redshift Spectrum

  • Amazon Redshift Spectrum
  • Configuring data for Amazon Redshift Spectrum
  • Amazon Redshift Spectrum Queries
  • Hands-on lab 7: Using Amazon Redshift Spectrum

Module 9: Maintaining clusters

  • Audit logging
  • Performance monitoring
  • Events and notifications
  • Lab 8: Auditing and monitoring clusters
  • Resizing clusters
  • Backing up and restoring clusters
  • Resource tagging and limits and constraints
  • Hands-on lab 9: Backing up, restoring and resizing clusters

Module 10: Analyzing and visualizing data

  • Power of visualizations
  • Building dashboards
  • Amazon QuickSight editions and features