Pobierz kartę szkolenia

The Machine Learning Pipeline on AWS

kod szkolenia: AWS-ML-PIPELINE / PL AA 4d

promocja
Termin
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 4 dni |  28h|  28.10 29.10 30.10 31.10
5 500,00 PLN + 23% VAT (6 765,00 PLN brutto)
Poprzednia najniższa cena:
5 500,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 4 dni |  28h|  25.11 26.11 27.11 28.11
5 500,00 PLN + 23% VAT (6 765,00 PLN brutto)
Poprzednia najniższa cena:
5 500,00 PLN
tryb Distance Learning

poziom Średnio zaawansowany

czas trwania 4 dni |  28h|  16.12 17.12 18.12 19.12
5 500,00 PLN + 23% VAT (6 765,00 PLN brutto)
Poprzednia najniższa cena:
5 500,00 PLN
6 500,00 PLN 7 995,00 PLN brutto

This course is intended for:

  • Developers
  • Solutions Architects
  • Data Engineers
  • Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker

In this course, you will:

  • Select and justify the appropriate ML approach for a given business problem
  • Use the ML pipeline to solve a specific business problem
  • Train, evaluate, deploy, and tune an ML model using Amazon SageMaker
  • Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
  • Apply machine learning to a real-life business problem after the course is compl

We recommend that attendees of this course have:

  • Basic knowledge of Python programming language
  • Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
  • Basic experience working in a Jupyter notebook environment
  • Course: polish

Day 1
Module 0: Introduction

  • Pre-assessment

Module 1: Introduction to Machine Learning and the ML Pipeline

  • Overview of machine learning, including use cases, types of machine learning, and key concepts
  • Overview of the ML pipeline
  • Introduction to course projects and approach

Module 2: Introduction to Amazon SageMaker

  • Introduction to Amazon SageMaker
  • Demo: Amazon SageMaker and Jupyter notebooks
  • Hands-on: Amazon SageMaker and Jupyter notebooks

Module 3: Problem Formulation

  • Overview of problem formulation and deciding if ML is the right solution
  • Converting a business problem into an ML problem
  • Demo: Amazon SageMaker Ground Truth
  • Hands-on: Amazon SageMaker Ground Truth
  • Practice problem formulation
  • Formulate problems for projects

Day 2
Checkpoint 1 and Answer Review
Module 4: Preprocessing

  • Overview of data collection and integration, and techniques for data preprocessing and visualization
  • Practice preprocessing
  • Preprocess project data
  • Class discussion about projects

Day 3
Checkpoint 2 and Answer Review
Module 5: Model Training

  • Choosing the right algorithm
  • Formatting and splitting your data for training
  • Loss functions and gradient descent for improving your model
  • Demo: Create a training job in Amazon SageMaker

Module 6: Model Evaluation

  • How to evaluate classification models
  • How to evaluate regression models
  • Practice model training and evaluation
  • Train and evaluate project models
  • Initial project presentations

Day 4
Checkpoint 3 and Answer Review
Module 7: Feature Engineering and Model Tuning

  • Feature extraction, selection, creation, and transformation
  • Hyperparameter tuning
  • Demo: SageMaker hyperparameter optimization
  • Practice feature engineering and model tuning
  • Apply feature engineering and model tuning to projects
  • Final project presentations

Module 8: Deployment

  • How to deploy, inference, and monitor your model on Amazon SageMaker
  • Deploying ML at the edge
  • Demo: Creating an Amazon SageMaker endpoint
  • Post-assessment
  • Course wrap-up